Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 30, 2026
-
Background: Fat infiltration in skeletal muscle is related to declining muscle strength, whereas excess subcutaneous fat is implicated in the development of metabolic diseases. Methods: Using multi-slice axial T2-weighted (T2w) MR images, this retrospective study characterized muscle fat infiltration (MFI) and fat distribution in the lower extremity of 107 subjects (64M/43F, age 11–79 years) with diverse ethnicities (including White, Black, Latino, and Asian subjects). Results: MRI data analysis shows that MFI, evaluated by the relative intensities of the pixel histogram profile in the calf muscle, tends to increase with both age and BMI. However, statistical significance was found only for the age correlation in women (p < 0.002), and the BMI correlation in men (p = 0.04). Sex disparities were also seen in the fat distribution, which was assessed according to subcutaneous fat thickness (SFT) and the fibula bone marrow cross-sectional area (BMA). SFT tends to decrease with age in men (p < 0.01), whereas SFT tends to increase with BMI only in women (p < 0.01). In contrast, BMA tends to increase with age in women (p < 0.01) and with BMI in men (p = 0.04). Additionally, MFI is positively correlated with BMA but not with SFT, suggesting that compromised bone structure may contribute to fat infiltration in the surrounding skeletal muscle. Conclusions: The findings of this study highlight a sex factor affecting MFI and fat distribution, which may offer valuable insights into effective strategies to prevent and treat MFI in women versus men.more » « less
-
Abstract Promoter DNA methylation is a well-established mechanism of transcription repression, though its global correlation with gene expression is weak. This weak correlation can be attributed to the failure of current methylation quantification methods to consider the heterogeneity among sequenced bulk cells. Here, we introduce Cell Heterogeneity–Adjusted cLonal Methylation (CHALM) as a methylation quantification method. CHALM improves understanding of the functional consequences of DNA methylation, including its correlations with gene expression and H3K4me3. When applied to different methylation datasets, the CHALM method enables detection of differentially methylated genes that exhibit distinct biological functions supporting underlying mechanisms.more » « less
-
null (Ed.)Data-driven discovery of cancer driver genes, including tumor suppressor genes (TSGs) and oncogenes (OGs), is imperative for cancer prevention, diagnosis, and treatment. Although epigenetic alterations are important for tumor initiation and progression, most known driver genes were identified based on genetic alterations alone. Here, we developed an algorithm, DORGE (Discovery of Oncogenes and tumor suppressoR genes using Genetic and Epigenetic features), to identify TSGs and OGs by integrating comprehensive genetic and epigenetic data. DORGE identified histone modifications as strong predictors for TSGs, and it found missense mutations, super enhancers, and methylation differences as strong predictors for OGs. We extensively validated DORGE-predicted cancer driver genes using independent functional genomics data. We also found that DORGE-predicted dual-functional genes (both TSGs and OGs) are enriched at hubs in protein-protein interaction and drug-gene networks. Overall, our study has deepened the understanding of epigenetic mechanisms in tumorigenesis and revealed previously undetected cancer driver genes.more » « less
An official website of the United States government
